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Abstract. In order to study the accuracy and properties of a certain type of arbitrary-order 
phase-integral approximations, especially as regards the connection formula for tracing a 
wavefunction from a classically forbidden region to a classically allowed region, the 
Schrodinger equation for the one-dimensional harmonic oscillator is solved by means of the 
first, third and fifth order of these approximations, and the resulting approximate wavefunc- 
tions, both when normalised and when fitted to the exact wavefunctions at +CO, are 
compared with the corresponding exact wavefunctions. The numerical results show that, 
except for the lowest energy eigenstates, the higher-order phase-integral approximations in 
question are very accurate both in the classically allowed and in the classically forbidden 
regions. 

The aim of the present investigation is also to illuminate and confirm numerically 
certain theoretical results of principal significance which are subject to confusion in the 
literature. 

1. Introduction 

While the accuracy of energy eigenvalues obtained by means of the half-integer 
Bohr-Sommerfeld quantisation condition, with or without higher-order corrections, 
has been examined, over the years, by many authors, studies of the accuracy of the 
wavefunctions themselves have not been made to the same extent. In a rather recent 
paper, however, Grunwald and Milano (197 1) studied the accuracy of the first-order 
JWKB wavefunctions by evaluating the approximate expressions for the first ten 
eigenfunctions for the linear harmonic oscillator and comparing them with the exact 
wavefunctions. To the knowledge of the present authors no numerical study of the 
accuracy and range of validity of higher-order JWKB wavefunctions or similar higher- 
order approximate wavefunctions has been reported. 

In the present paper we study the accuracy of the approximate wavefunctions 
obtained by means of a certain kind of phase-integral approximation, the first order of 
which is identical to the first-order JWKB approximation, while the higher orders are 
simpler than the corresponding JWKB approximations and also have other advantages, 
very important from a theoretical point of view (N Froman 1966b, 1970; see also the 
review article by McHugh 1971). We have solved the Schrodinger equation for the 
one-dimensional harmonic oscillator by means of the first, third and fifth order of those 
approximations, when the quantum number n has the values 0 ,1 ,2 ,3 ,4 ,5 ,10 ,15  and 
20. The resulting approximate wavefunctions have then been compared with the 
corresponding exact wavefunctions. We use certain values of the wavefunctions to 
illuminate, in table 1, the high accuracy of the phase-integral wavefunctions, obtainable 
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when one is well away from the classical turning points. Of the complete numerical 
material we present in figure 2 the results for a few quantum numbers (n = 0, 1,s and 
10) to illuminate graphically, how the phase-integral approximations fail in the neigh- 
bourhood of the classical turning points. 

As will be explained in the last section, the numerical investigation in the present 
paper is of interest, not only for finding the accuracy obtainable, but also for illuminat- 
ing numerically certain theoretical results of principal significance. 

2. Exact solution 

The Schrodinger equation for a one-dimensional harmonic oscillator, after introduc- 
tion of dimensionless quantities, has the form 

$+ Qz(z)+ = 0 

where 

(2) Q ~ ( Z ) = A - Z  2 . 

A = 2 n + 1 ,  n =0,  1 , 2 , .  . . , (3 ) 

+,,(z) = ( n  !2n4?r)-”z~,,(z) exp(- z2/2), (4 ) 

The eigenvalues of A are 

and the corresponding normalised exact solutions of (1) are (Schiff 1968, p 71 f f )  

where H,,(z) is the Hermite polynomial of order n. 

3. Approximate solution 

The approximate solutions of (1) which we shall study in the present paper are linear 
combinations of phase-integral approximations of the form 

+ = q-’”(z) exp( * iw (z)) ,  (5 1 
where 

w ( z ) =  I‘q(z)dz. 

The functions 4 (2) and w (z), corresponding to the (2N+ 1)th-order phase-integral 
approximation, are given by 



Numerical study of a phase -integral connection formula 1289 

with 

W ( ~ ” + ~ ) ( Z )  = 1’ q(2v+1)(z) dz. 

The first few functions Yz,  are 

Yo= 1 ,  

Y2 = Z E O ,  
1 

1 2 1 d2Eo y4= - - e o - - -  
8 8 dr2  

with 

and 

5 = 1‘ Q(z) dz. 

The functions Q1/2(z) and Q(z) have branch-points at the classical turning points, while 
the functions Y2,, are single-valued. In studying the wavefunction we choose to 
consider the upper edge of the real axis, and in figure l ( c )  we show our choice of phase 
for Q ’ / ’ ( x  +io), real values of z being denoted by x .  In the following, we shall for the 
sake of simplicity always write simply x instead of x +io. 

According to (2),  ( B ) ,  ( l l a - c ) ,  (12) and (13), we obtain 

(14a)  q (1) (z)=Q(z)= ( A  - z ~ ) ’ / ~ =  -i(z2-A)1/2, 

3z2+2A 
d 3 ’ ( 2 )  = Q ( z e ,  

297z4 + 732Az2 + 76A2 
128(A - z ~ ) ~  q @ ) ( ~ ) =  - Q ( z )  

r la1 
x+iO 

I 

0 

Figure 1. Contour of integration r (bold line indicates a cut), when x (= x +io) is located: 
( a )  in the classically forbidden region: ( b )  in the classically allowed region: ( e )  the phase of 
~ ‘ ’ ~ ( x  +io). 
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If in (14a, b, c) we replace z by x (which, as just mentioned, means x +io), we obtain 
with Q ( x )  = (A - x 2 ) ' l 2  the expressions for q'l), 4"' and 4") in the classically allowed 
region (1x1 < JA), while with Q ( x ) =  -i(x2 -A)'/'we obtain the functions in question in 
the classically forbidden region to the right of the well ( x  > JA). 

Since, in the present case, Q 2 ( z )  is an even function of z ,  the eigenfunctions are 
either symmetric or anti-symmetric functions of z, and it suffices to study the solutions 
on the positive part of the real axis. With a convenient choice of the constant lower limit 
in the integral (6 )  defining w(z) ,  we have (cf (10)) 

where the contour of integration r is depicted in figures l ( a ,  b ) .  Evaluating the integral 
in (15) for 2v+ 1 equal to 1 ,  3 and 5 ,  we obtain 

~ ' - 6 A x  
' 1 + i 2 4 A ( ~ 2 - A ) 3 / 2  x > JA, 

56x9- 252Ax' +441A2x5+ 1860A'x' + 3420A4x 
5760A '(A - x 2)9/2 

.56x9- 252Ax' +441A2x5 + 1860A3x3 + 3420A4x 
5 760A ' ( x  - A )9/2 

- 1x1 < JA, (16c) 

x > J A .  ( 1 6 ~ ' )  - 1  

w 9 x ) =  

Since we are concerned with a bound-state problem, only the solution which tends 
to zero as x +CO is acceptable. Apart from a constant normalisation factor, we can 
obtain approximate expressions for the wavefunction on the real axis, except in the 
neighbourhood of the classical turning points x = f JA, by tracing the bound-state 
phase-integral wavefunction from the classically forbidden region to the classically 
allowed region with the aid of the pertinent connection formula, derived with reference 
to any conveniently chosen order of the phase-integral approximations (N Froman 
1970, equation (21)). The normalisation factor, which has been given in a simple form 
for arbitrary-order phase-integral approximations (Yngve 1971, 1972, P 0 Froman 
1974), is in the present case equal to (27r)-'/*, independently of the order of the 
phase-integral approximation (Yngve 197 1). The approximate, normalised wavefunc- 
tion obtained is 

with 4 ( x )  and w ( x )  given by (7 )  and (9) with (14a-c) and (16a-c'), respectively. 
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4. Discussion 

The accuracy of the normalised eigenfunctions obtained in the first-, third- and 
fifth-order phase-integral approximations, respectively, is obtained by comparison with 
the exact, normalised wavefunctions (2). Graphical representations of the approximate 
and the exact wavefunctions are, for some quantum numbers, given in figure 2. As is 
well known, the approximations break down in the neighbourhood of the classical 
turning points. In the first-order approximation we have q ( z )  = Q(z), and hence q ( z )  is 
zero at the classical turning points. For the higher-order approximations q ( z )  is 
singular at such a point and has, in its neighbourhood, a certain number of zeros (3Nfor 
the approximation of order 2N+ l), which, with increasing N, spread out over a larger 

, Order Order 

__--------------- ,,*qk"dh 
X - X 

n - 5  
n - 0  

, 

I 3rd 

I 5th 

n = 10 
' n=l  

Figure 2. Full curves represent exact, normalised wavefunctions. Broken curves represent 
approximate wavefunctions obtained by using phase-integral approximations of the first, 
third and fifth orders. Except for regions in the neighbourhood of the classical turning 
points, located at x = f (2n + l)*'*, and except for the lowest states, the difference between 
the approximate and the exact results is too small to be distinguished in this figure. We note 
that, roughly speaking, the approximate solution becomes useful already at the first 
extremum of the wavefunction in the classically allowed region, 
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and larger region around the zero of Q' (z )  in question. As a consequence, in this region 
the approximations fail, the function 4(2), when N > 0, changes violently, and the 
picture of Stokes' and anti-Stokes' lines becomes, correspondingly, very complicated 
(N Froman 1970, figures l(a,  b)) .  The fact that, for a fixed quantum number n, the 
region around a classical turning point in which the approximations fail becomes wider 
with increasing order of the approximations used, is seen from the curves in figure 2 .  On 
the other hand, when x lies outside the region, in which the zeros of 4 ( z )  are located, 
and moves away from the classical turning point, the approximate solution rapidly 
becomes very accurate. When x lies well away from the classical turning points, the 
approximate solution improves with increasing order of the phase-integral approxima- 
tion used until an optimal order is reached. For instance, it is seen from table 1 (and also 
from figure 2 )  that for n = 0 and n = 1 and for the values of x at the origin and at the first 
extremum of the wavefunction, respectively, the third order provides the optimum. 

Table 1. Absolute value of the relative error of the phase-integral wavefunction at the 
extremum lying at the origin, when n is even, and nearest to the origin, when n is odd: ( a )  
when ($n)approx is normalised, i.e. calculated according to (17a); ( b )  when (IJln)approx is fitted 
to at infinity. 

~ 

Quantum I(@" )approx - ( @ n ) = ~ a ~ ~ l / l ( @ " ) = ~ ~ = ~ l  

number 
First order Third order Fifth order 

0 
1 
2 
3 
4 
5 

10 
15 
20 

6.3 x 
3.9 x 
4.7 x 
3 . o ~  1 0 - ~  
1.5 x 1 0 - ~  
1 . 4 ~  1 0 - ~  
3 . o ~  1 0 - ~  

7.3 x 1 0 - ~  
1.8 x 

6.3 x lo-' 
5.4 X 
1.3X loW2 
9.0 x io-' 
6.1 x io-' 
5.2 x io-' 
2.3 x io-' 

1.1 x 1 0 - ~  
1.5 x lo-' 

~ 

4.9 x 5.5 x 
3.4 X 3.5 X lo-' 
3 4  x 1 0 - ~  4.4 x 1 0 - ~  
2 . 0 ~  1 0 - ~  2.3 x 1 0 - ~  
4.1 x 1 0 - ~  5 . 4 ~  1 0 - ~  
3.2 x 1 0 - ~  3.4 x 10-~  
1.5 X 1.3 X 

9.2 X lo-' 
5.3 x 5.3 x 

9.2 X lo-' 

~~ ~~~ 

3.1 X lo-' 3.2X lo-' 
2 .0x 10-1 2.0x lo-' 
1 . 0 ~  1 0 - ~  1 . 0 ~  1 0 - ~  
5.2 X 5.4 x 
3.9 X 4.5 X 
2.7 x 3.3 x 
4.0X lo-' 2 . 4 ~  lo-' 
9.8 X lo-' 9 . 8 ~  lo-' 
1.3 X lo-' 1.2 X lo-' 

The optimal order, yielding the highest accuracy obtainable, is higher the larger the 
quantum number n is and the farther from the classical turning points x lies. In this 
connection we also draw attention to the striking manner in which the errors in the 
wavefunctions creep further and further outwards from the turning points, as the order 
of approximation increases (cf figure 2). This observation extends our understanding of 
the asymptotic nature of the approximation used. With increasing order of approxima- 
tion the accuracy first increases but then in general starts decreasing, when the errors, 
spreading out from the sources of the eventual divergence, i.e. the turning points, 
approach and reach the point where the wavefunction is to be calculated. 

The fact that the phase-integral approximations cannot be used in a certain region 
around a classical turning point may at first seem to be a serious drawback, which should 
limit considerably the usefulness of these approximations. In particular, one might be 
tempted to think that the usefulness of higher-order approximations would be highly 
restricted because of this fact. The improvement of the accuracy gained far away from 
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the turning point, with increasing order of approximation, might seem to be of limited 
value in view of the fact that, at the same time, the region where the solution fails in the 
neighbourhood of the turning point becomes broader. Fortunately, it turns out that 
there are only few physical problems for the solution of which it is necessary to know the 
wavefunction in the neighbourhood of classical turning points. Such knowledge is, of 
course, needed when there is a boundary condition imposed on the wavefunction in the 
neighbourhood of a classical turning point. It is, however, in general not needed for the 
calculation of important physical quantities such as energy eigenvalues, phase shifts and 
transmission coefficients, as is well known from the application of the usual JWKB 
approximation, Recently, accurate phase-integral formulae, not involving wavefunc- 
tions, have been obtained also for quantal expectation values (N Froman 1974) and 
matrix elements (N Froman and P 0 Froman 1977) in a single-well potential. 

Except for the lowest quantum states, the right-hand side of (17a)  approximates the 
exact, normalised wavefunction in the classically allowed region extremely accurately, 
when one is well away from the classical turning points, and especially when higher- 
order approximations are used. To illustrate this statement concretely we give in the 
columns labelled ( a )  in table 1 the absolute value of the relative error at the extremum 
at the origin, when n is even, and at the extremum nearest to the origin, when n is odd. 
For large quantum numbers n,  the relative error is seen to be several orders of 
magnitude less in the third-order than in the first-order approximation and about one 
order of magnitude less in the fifth-order than in the third-order approximation. For all 
values of n investigated, the sign of the error is such that the extrema are alternately 
too big and too small, when calculated in the first-, third-, and fifth-order approxima- 
tions, respectively. Studying the accuracy at other maxima or minima of the wavefunc- 
tion in the classically allowed region, we find similar features. We also find that, for a 
fixed order of the phase-integral approximations studied, the relative error may be 
negative in certain intervals of the classically allowed region and positive in others. 

In order to study the error due to the connection procedure itself, without the 
smearing out of the error resulting from the normalisation, we fitted the exponentially 
decreasing phase-integral function to the pertinent exact wavefunction such that they 
agreed exactly for x = + 00. This means that for each value of A we had to multiply the 
right-hand sides of (17a)  and (176)  by a certain constant (depending on A). In the 
columns labelled ( 6 )  in table 1 we give the relative error of the approximate wavefunc- 
tion obtained in this way, calculated at the same point as the relative error of the 
normalised wavefunction displayed in the columns labelled (a ) .  We note that, in the 
first-order approximation, the wavefunction obtained by fitting at + o;, improves only 
slowly when the quantum number n increases. Thus, in other words, in the first-order 
approximation the connection formula does not yield very accurate wavefunctions even 
for large quantum numbers. By the normalisation we achieve, for large quantum 
numbers, a considerable improvement of the first-order wavefunction, as can be seen 
from table 1. In the third-order as well as in the fifth-order approximation, the errors in 
column ( a )  and column (6) in table 1 do not differ significantly and are very small, 
except for the lowest states. Thus, we realise the great improvement in the accuracy of 
the connection formula which can be achieved when one uses higher-order approxima- 
tions. 

Beside the aim of studying quantitatively the accuracy of the wavefunctions 
obtained by means of the arbitrary-order phase-integral approximations under consid- 
eration, our purpose is also to confirm numerically certain results, which have been 
questioned (Dingle 1965, 1973, Berry and Mount 1972). 
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Let us first say a few general words about the theory, on which the formulae 
investigated in the present paper, are based. The derivation of the connection formula 
for arbitrary-order phase-integral approximations (N Froman 1970) used in the present 
investigation was made by means of an extension of the method, developed by N 
Froman and P 0 Froman (1965), for handling the connection problems of the 
first-order JWKB approximation. This extension (N Froman 1966b) could, after 
certain precautions, be made quite straightforwardly, and several results could be 
directly generalised to higher orders. Although the derivation of the arbitrary-order 
connection formula yielding (17a), when (17b) is given, is rigorous, we found it 
worthwhile, for illustrative and didactic purposes, to make the numerical investigation 
presented above, because already the well known first-order connection formulae have 
given rise to a great deal of discussion over the years, and continue to do so. The very 
accurate values of the higher-order phase-integral wavefunctions discussed in the 
present investigation confirm numerically in a direct way that the connection formula in 
question has the correct form and thus, in turn, that the just mentioned extension of the 
method for handling connection problems to arbitrary-order phase-integral approxi- 
mations works efficiently. 

Finally let us make some comments on the fact that the Stokes’ constants are 
independent of the order of approximation. For the type of phase-integral approxima- 
tions used in the present paper, the theory, developed by N Froman and P 0 Froman 
(1965) and extended to higher-order approximations by N Froman (1966b), yields the 
same Stokes’ constants independently of the order of approximation. Implicitly, this 
result is confirmed by the fact that the phase-integral formulae not involving wauefunc- 
?ions, obtained according to this theory, have been found to yield physical quantities 
very accurately. See, for instance, some papers concerning the double oscillator (N 
Froman 1966a, N Froman and Myhrman 1970, N Froman et a1 1972) and a paper on 
the calculation of transmission and reflection coefficients (Karlsson 1975). The high 
accuracy achieved for wavefunctions reported in the present paper confirms directly 
that the connection formula corresponding to (17a, b ) ,  involving Stokes’ constants 
independent of the order of approximation, has the correct form. If Stokes’ constants 
depended on the order of approximation used, this would imply that, with (17b) given, 
the right-hand side of (17a) should be multiplied by a certain constant, and the phase of 
the cosine should be changed by a constant, both of these constants being dependent 
on the order of approximation, in order that we should obtain accurate values of the 
wavefunction in the classically allowed region. Thus, the great numerical accuracy 
achieved confirms the fact that the Stokes’ constants are independent of the order of 
approximation used. The conclusion that the Stokes’ constants are independent of the 
order of approximation, confirmed for the arbitrary-order phase-integral approxima- 
tions used in the present paper, must be true also for the arbitrary-order JWKB 
approximations which, although they are of a more complicated analytic form, have an 
accuracy comparable to that of the phase-integrable approximations used in the present 
paper. 
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